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Abstract. This study presents a control approach, where Cartesian variable impedance control parameters are tuned online
as the result of quadratic programming optimization dynamically modulating stiffness and damping coefficients based on
desired sensory-motor skill encoded by Gaussian mixture regression behavior prior model.
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AHHoTauums. MNpeacTaBneH MeTod ynpaBrieHVsl, MPpU KOTOPOM MapaMeTpbl UMMNedaHCHOTo perynstopa B AeKapTOBOM
NPOCTPAHCTBE HacTpauBaloTCs B PEXNME pearnbHOro BpeMeHu NocpeacTBOM ONTUMM3aLNUM HAa OCHOBE MeTofa
KBagpaTUYHOro NMporpaMMupoBaHus. HacTpoiika napamMeTpoB BbIMOMHAETCA B COOTBETCTBUU C reHepupyeMbiMm
MOZAENAMU CEHCOPHO-MOTOPHbIX HABbIKOB, XernaeMbIMU NPOUIAMU CKOPOCTEN U CUIT B3aUMOLENCTBUA UHCTPYMEHTa
poboTa C OKpY>KEHUEM.

KntoyeBble cnoBa: O6y‘~IeHVIe Ha OCHOBe OAeMOHCTpauun, ynpasneHme nepeMmeHHbIM nMnegaHcoMm, nepegada HaBbIKOB,
MaHUNynAuna ¢ KOHTakToM

Ccbinka gns uMtnpoBaHus: Baddax Anu, KormrobuH C. A. YnpaBneHve MaHunynsitopamv ¢ HACTPOMKOW MMMNeaaHCHbIX
pEerynsiTopoB Ha OCHOBE MOZESEN CEHCOPHO-MOTOPHbIX HaBbIKOB // V13B. By30B. MpubopocTtpoeHue. 2024. T. 67, Ne 10.
C. 893-898. DOI: 10.17586/0021-3454-2024-67-10-893-898.

Introduction. This work is aimed at developing variable impedance learning control strategy
(VIC) from collected behavior priors which is an extension to our previous work [1]. Imitation
learning (IL) or learning by demonstration (LfD) techniques are tools that enable machines to imitate
human behavior to perform a task [2, 3]. Standard LfD approaches have focused on path-following
problems, but recent developments have expanded robot learning to the impedance domain [4]. In [5]
an approach to improve Gaussian clusters then further Gaussian Mixture Model/Gaussian Mixture
Regression (GMM/GMR) so that LfD enabled cobots can carry out a variety of complex manufacturing
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tasks effectively was optimized. Stiffness matrices were estimated using residuals from the regression
process instead of calculating the optimal stiffness subjected to generic constraints. Kinesthetic
demonstrations were adopted in [6] to teach a robot change in stiffness based on tactile sensations.
In this research, only desired trajectory was fed as input to the robotic manipulator while learning
stiffness was by disturbing the robot during execution of the trajectory to learn the appropriate stiffness
by cartesian/joint impedance controller. A similar approach was followed in [7] but use the constraints
derived from [8] to ensure the convergence of the trajectory obtained using GMR.

In [9], the damping term from the interaction model was excluded and GMM was used to encode
the end effector position. Work in [10] used LfD to study the motion and impedance parameters of
two manipulators performing two-handed assembly. In their assessments, they show that adapting the
impedance of both robots in both rotation and feed is beneficial because it allows the assembly task
to be completed faster and with fewer joint movements.

Problem Statement. In this work the GMR behavior prior model (BP model) developed in [1]
was adopted as a generator that takes time and material category U = [tT, MT] c R2*N as input and
the outputs desired trajectory/ twist and wrench data V = [P9, &4, Wd] ¢ RI8*N,

The case study focuses on the robot learning impedance parameters during straight cuts by fixing
the X-axis orientation of the scalpel while allowing other angles to adjust, thus simplifying the problem
by disregarding learned angular velocities and torques.

The dimensionality of the BP model output [1] was then reduced to

V = [X9, Xd, Fd] ¢ RO,

where X9 = [X¢, Y4, 7d] ¢ R3*N, Xd = [Xd, yd, 7d] € R3*N and F9 = [F{, F{, F¢] € R¥*N are desired
linear trajectory, velocity and Forces learnt from behavior priors model respectively.

The output was then fed to a QP (Quadratic programming) optimizer that allows online
modulation of the stiffness of the Cartesian whole-body controller illustrated in Fig. 1.
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The QP is formulated as follows:
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s.t.
KminsKldS Kmax; j e {1, ..., N},
E_’minggidggmax; i€{l,...,N},
Fmin < Fl‘?XtSFmaX; i€{l,...,N},

T(xt) > €,

where inequality constraints are considered element-wise, m is the cartesian DoF number,
K?’, Kmin Kmax ¢ Rm*m gre the optimized, minimum and maximum stiffness matrices respectively,
<‘;,-d , Emin_ gmax € Rm*m gre the optimized, minimum and maximum damping ratio metrices respectively,
is the initial minimum tank energy that should be stored to maintain the system passivity, Ff*' the
estimated external force generated on the scalpel blade during cutting process at time step 7,

F = KX, + D{X;,

X=X-Xd,
X=X_Xd
D¢ =2&8VKY,

where X; is the position error between the actual scalpel pos and desired one at time step 7, X; is the
linear velocity error accordingly, 7(x;) is the tank that stores the energy and x; is the state of the tank,

1
T(x)) = =7,
2

the tank energy is initialized so that 7(x,0)) > e.

Each time step i, the robot must be controlled via VIC controller that adjusts the stiffness for
sake of reaching the desired cutting force at the instant position error X;. As this is done online, only
the instant time step is considered in this approach. Thus, the problem statement is as follows:

i l . ext d)|2 ; d min||2
min ~ ¥ (|[F* — F9[q + ||diag(k? — Kmin||g)
%i:éi €R3 2 =1

S.t.
Kkmin < k4 < kmax,

}’;min < éd < émax,
Fmin < Fext < Fmax,

T(Xt) > €,

where kd, kmin, kmax € R3 are the vectors of the diagonal elements of desired, minimum and maximum
stiffness respectively, Emin, &, Emax € R3 the vectors of the diagonal elements of the desired, minimum
and maximum damping ratio accordingly, Q, R € R3*3 are weighting matrices used to modulate the
attention of the optimizer to the optimization terms.

Experimental setup and technical details. This study employed the iiwa KUKA LBR 14 robotic
platform for two key experiments:

1. Force Estimation Calibration: This experiment aimed to verify the reliability of the external
forces estimated by the robot’s inverse dynamics. A Force/Torque (FT) sensor was integrated to
compare the measured forces with the robot’s estimated forces at the TCP (Tool Center Point) frame.

The robot was programmed to follow a predefined path on the plate’s surface, applying different
desired forces along the X-axis of the TCP frame: [15, 20, 25, 30, 35] N. Both the FT sensor and the
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robot’s sensors recorded force data, which were filtered using an exponential moving average (EMA)
filter (o = 0.1) to remove noise. The error between the measured and estimated forces was calculated
using the formula:

e=FIT_FIC?,

where e is the error signal, FFT, F;TCP are the recorded forces from FT sensor and the robot end-effector
(TCP frame) respectively.

The mean and variance of the error were calculated, revealing a mean error of 4.29 N, which
was deemed negligible. This small error was attributed to partial synchronization issues between the
real FT sensor data and the robot’s ROS-based readings, confirming the reliability of the robot’s force
estimation (refer to Fig. 2, a — force measured from FT sensor (FI7T) vs. estimated force from robot
inverse dynamics on TCP frame (F{P); b — error value e).
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Fig. 2

2. Cutting experimental setup and stiffness optimization: Like the previous experiment, the
robot (Fig. 3, using penoplex material as an example) was commanded using a ROS program script
written in Python with the rospy library. However, in this setup, impedance control mode was used
as the base controller. The desired stiffness was applied in three different scenarios: constant stiffness
k =[500, 500, 500] N/m, maximum allowed stiffness km2x and the online optimized stiffness k4
from the QP optimizer output. These scenarios were tested on three different materials: cork, PVC,
and penoplex.

The chosen values for the optimizer were as
follows: kmin = [10, 10, 10] N/m, kmax = [5000, 5000,
5000]N/m, &min = [0.0, 0.0, 0.0] N/m and &max = [1.0,
1.0, 0.1] N/m. The bounds for the force component
were chosen according to the maximum and minimum
generated forces by BP model for each material
Fmin = min(F9), Fmax = max(F9) with different bounds
for different directions. Simultaneously, applying forces
using constant stiffness i.e., k results in failure to achieve
the required task.

Experimentally, the weighting matrices were set to
be diagonal matrices as with values Q =1, R=1-10-9,

The Python programming language with SciPy
library were used to adopt the QP optimizer, which
relies on the bound-constrained optimization algorithm
L-BFGS-B [11]. The position and velocity errors X;,

Fig. 3 X; together with the force dynamic constraints play an
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essential role in the optimization behavior (Fig. 4 — optimization results for the online QP stiffness
optimizer (PVC material): Figs. a—c represent the position error on X, Y, Z axes respectively; Figs. d—f
represent how Fext applied by robot using optimal impedance at each time step fits the desired force
Fd produced by GMR-model on X, Y, Z respectively; Figs. g/ represent the values of the optimal
impedance calculated by the optimizer on X, Y, Z axes respectively).
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Conclusions and future work. This study aimed at developing variable impedance learning
control strategy (VIC) based on desired human sensory-motor skill encoded by GMR behavior prior
model. Initial experiments confirmed the reliability of external force estimates through robot inverse
dynamics using a specialized setup with a pointing tool and an FT sensor for accurate measurement.
Subsequent experiments involved cutting different materials, where behavior priors guided a Quadratic
Programming (QP) optimizer to tune stiffness and damping in real-time. The method’s effectiveness
was tested under various impedance scenarios: optimal, constant, and maximum. A notable innovation
was the incorporation of developing a variable impedance control strategy where the motion dynamics
are learnt from encoded human sensory-motor skill instead of classical tuning algorithms.
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