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Abstract. Learning from demonstration approach is gaining interest for programming robot sensory-motor skills. At the
same time, most of the works are addressing manipulation scenarios with position-based control, while various application
domains and work in dynamic environment require safe and stable physical interaction where assessing proper force/torque
profile along motion is crucial. This study is aimed at developing experiment planning and data collection and processing
procedure for training robot behavior priors for dynamic interaction tasks. We fuse motion capture and force-torque sensory
data within robot-out-of-loop setting to train Gaussian Mixture Model/Gaussian Mixture Regression (GMM/GMR) model
as a reference motion generator that takes time and material label as inputs and outputs predicted end-effector’s pose, twist,
and interaction wrench vectors. For the case-study we considered experiment setting of cutting three different materials like
penoplex, cork, and PVC resulting in 120 demonstrations in total (40 for each material). Algorithms for data processing,
GMM/GMR model training and verification have been introduced. We achieved RMSEs of 7.12 and 10.69 % for twist
and pose predictions respectively and RMSE of 14.33 % for power estimates as a metric to illustrate how accurate twist-
wrench correspondences have been captured by our model, which is important for interaction tasks.
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AHHoTaums. Moaxon k 06y4YeHMo Ha OCHOBE AEMOHCTpaLMM NPUBMEKaET Bce 6orbLue BHUMaHNS Npy NporpaMmMyMpoBaHim
CEHCOPHO-MOTOPHbIX HaBbIkOB pPo60TOB. B TO e BpeMs 60MbLINHCTBO paboT COCPeaOTOHEHO Ha CLEHapuUsx C
yrnpaBreHeM no MoJsIoXKEHWI, TOrAa Kak pasnuyHble NpuknagHblie obnact n pabota B AMHaMUYeCcKon cpeae TpebytoT
6e30nacHoro 1 ycton4mBoro on3mMyeckoro B3aMMogenCTBIUS, rae KpUTUHECKU BaXXHO OLLEHUMBaTb COOTBETCTBYIOLLNIA
npodunb CUMbI/MOMEHTa KOHTaKTa BAOSb TpaekTopun. PaspaboTaHa MeToauka NnaHMpoBaHWs SKCNEPUMEHTOB 1 cbopa u
06paboTkM AaHHbIX AN 00yYEHNs MOAENew, KOOUPYOLLMX CEHCOPHO-MOTOPHbIE HaBbIK AVMHAMUYECKOTO B3aVMOAENCTBUS
MaHUNynsiTopa C OKpy>XeHneM. [ns aTux uenen KOMMIEKCMPYTCS AaHHbIE, NOCTYNaloLmMe OT CUCTEMbI ONTUYECKOTO
3axBaTta ABWXEHMUSI U CUITOMOMEHTHOIO AaTyuka, U3MepsSieMble MPU BbIMOSIHEHWUM YENOBEKOM MOCINEA0BATENBHOCTH
Aencteuin. PaccMoTpeH npymMep pesku ckanbneneM pasnuyHbiX MaTepuanos no 3ajaHHbIM TpaekTopusaM. B kavectse
reHeparopa 3TarloHHOro ABWKEHWS NCMONb3YETCS perpeccuoHHas Mogernb Ha ocHoBe cMecu rayccmaH (GMM/GMR), Ha
BXOZ, KOTOPOW MOCTYNaKT METKN BPEMEHW 1 MaTepuana, a Ha BbIXO4e BbIBOASTCHA NpeAcka3aHHble 3HaYeHNs BEKTOPOB
NPOCTPAHCTBEHHOTO MOJIOXEHWS, CKOPOCTEN U CUIM U MOMEHTOB KOHTaKTa MHCTpyMeHTa. MNpoBeaeHo 120 akcneprMeHToB
C TPEMS pasnuyHbIMU MaTtepuanamm (neHonnekc, npobka n NBX) — no 40 Ha kaxabln matepuan. MNpeacraBneHsbl
anroputMbl Anst 06paboTky JaHHbIX, pe3ynbraThl 00y4eHus Moaeny n ee Bepudukauun. [ns npegckasaHuin CKOpocTur
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1 MOMOXEHNS MHCTPYMEHTA MOSyYeHbl 3HAYEHNsI CpeaHEKBaapaTUYECcKOro OTKNOHEHNsI COOTBETCTBEHHO 7,12 1 10,69 %,
a Takke 14,33 % — Ons MOLLHOCTM Kak METPUKM TOYHOCTM COOTBETCTBUS NMPOGUNSA CUIT U MOMEHTOB KOHTaKTa BAOIb
OBWDKEHUS.

Knroveesie cnoea: oby4yeHue Ha ocHoge AeMoHcmpauuu, nepedaya CEHCOPHO-MOMOPHbLIX Ha8bIKO8, KOHMaKmHasi
MaHunynayus, 3axeam osuxeHusi, GMM/GMR modenu

Ccbinka gnsa uutupoBaHusa: Baddax Anu, KomobuH C. A. ModenupoeaHue wabrioHO8 CEHCOPHO-MOMOPHbLIX Ha8bIKO8
0ns npoepamMmuposaHus pobomos 8 3adaqyax KOHmMaKkmHo20 MaHumnynuposaHus [/ 13B. By3oB. [NpubopoctpoeHune. 2024.
T. 67, Ne 6. C. 500-510. DOI: 10.17586/0021-3454-2024-67-6-500-510.

Introduction. Learning from demonstration (LfD) is a promising approach to transfer safe and
dexterous manipulation skills from human to robots, which is of even higher importance for contact-
rich tasks, where coordination between the applied interaction forces/torques and manipulation
trajectories is essential. This work is aimed at developing experiment planning and data collection and
processing procedure for training robot behavior priors for such tasks.

A recent comprehensive review on transfer learning in robotics, which includes approaches
taxonomy, trends and challenges description as well as analysis of more than 150 papers is presented
in[1].

Recording and processing data from demonstrations experiments is the first step to encode prior
knowledge on human sensory-motor skills that will be used later as behavior priors for accelerating
the LfD process [2, 3]. There are many recent works on that subject focusing mostly on pick-and-
place tasks, where kinesthetic data limited to position recordings and robot-in-the-loop (teleoperated
or hand-guided in admittance control mode) demos are good enough.

In [4], a novel approach to robot learning from human physical feedback is introduced. This
method characterizes human skills and tasks by breaking them down into object-centric sub-tasks and
interpreting physical interventions from human in relation to specific objects. The task is to adjust
nominal behavior priors from corrective movements (perturbations) initiated by human, therefore
unlike our approach there were no complete movement skill demonstrations recorded and the task was
limited to imitation of trajectories, while the interaction wrench was not considered.

In [5], a hybrid learning and optimization framework for mobile manipulators for complex
and physically interactive tasks was proposed. The framework exploits an admittance-type physical
interface to obtain intuitive and simplified human demonstrations and Gaussian Mixture Model
(GMM)/Gaussian Mixture Regression (GMR) to encode and generate the learned task requirements in
terms of position, twist, and wrench profiles. Unlike our proposed approach, this work adopted robot-
in-the-loop scenario and uses the resulted behavior priors as constraints for optimization of Cartesian
impedance controlled for a specified robotic platform which limits the applicability of the study to
address a very specific task with special conditions.

Since we target interaction control scenarios over larger workspaces like material cutting, a
novel robot-out-of-loop (ROOL) sensory setup enabling simultaneous motion capture (MoCap) and
interaction force-torque (FT) data recording have been designed.

Proposed approach provides a number of advantages:

1) high-accuracy richer sensory data to capture end-effector’s 6D pose as well as twist and wrench
correspondences to encode by behavior priors’ models;

2) better safety and more natural human movements during demonstrations, because there are
no constraints due to kinematic singularities and robot inertia for physically operated arms or limited
field-of-view and latency during teleoperation;

3) wider workspace not limited by robot reachability constraints.

To collect training datasets, we planned and conducted a series of cutting experiments with three
different materials like penoplex, cork, and PVC resulting in 120 demonstrations in total (40 for each
material).

GMM/GMR model have been employed as a manipulation skill encoder and behavior prior
generator. It accepts time and material labels as inputs and outputs predicted end-effector’s trajectory
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(end-effector’s pose and twist) with interaction wrench aligned along the movement. Models have
been trained using expectations maximization algorithm with log-likelihood as a loss function.

The rest of the paper is organized in the following way. At first, we formulate the problem of
behavior model training from ROOL demonstration data as a general optimization task adapted for
our case study. Next, we describe the experimental setup design including custom tooling and optimal
sensory infrastructure configuration. After we describe the MoCap and FT data processing approaches
followed by model structure and training algorithm explanation. Finally, we analyze obtained results
to justify training data quality, convergence of the training process, and consistency of the learned
manipulation skills with human demonstrations and conclude our work with discussion on future steps
of how obtained results can be incorporated to robot interaction control systems.

Problem Statement. Fig. 1 illustrates the suggested approach for training behavior priors’
generator from ROOL demonstrations and further use of this data within interaction control scenarios.
So, the core problem here is generator’s parameters training.

We introduced the GMM/GMR model [6—8] of components as a generator due to its adaptability
in capturing intricate structures, handling nonlinear relationships between inputs and outputs,
effectively estimating continuous variables from complex input-output mappings and the simplicity
in hyperparameter adjustment as we only need to fine-tune the number of Gaussian components.

P
Extend with
Data [f’, W] Twist data
Preprocessing AP(f)
pipeline &= 7
W P
=[P, & W]
Generator
GMM
= {17 T == o
RN 1::ining data ==1UVT | §=argmaxL,(0; 5)
U il pipeline 0e0
GMR
1 J(U, 6)
V=rc, b
Robot Control
: Impedance
optimization
Fig. 1
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We will refer to the GMM/GMR model parameters as 6 = [, X, «], where p € RE*D is the means
of Gaussians vector, X © RK*D*D g the covariance matrix, and @  RK is the mixing weights that
indicate how much each Gaussian component contributes to the model.

Then, generator training from a given pair of input-output data = = [U, V] can be formalized as
optimization problem:

0% = argmin||V — I>H, s. t.

0
0<m <1, Sm=1, VIZ >0,
VIsi>0,

where V' and V are recorded and predicted by the model /(U, 0) output values respectively given inputs
U, V; is i-th column of V, X is k-th covariance matrix from X, 6* is the vector of desired values of
model parameters’ estimates that minimize the error between the desired output values.

Experimental setup. The experimental setup is depicted at Fig. 2. Here we introduce the
following frames: stationary base frame {B} and two moving tool-attached frames {P} for scalpel and
{W} for FT sensor with both origins located at the tool central point (TCP, we select it at the scalpel’s
blade tooltip), but different orientations.

The OptiTrack system with 8 cameras, positioned around the working space in a way that tool-
attached markers are visible along its entire movement range by most of the cameras, was calibrated to
capture the central area among all cameras. The base frame {B} was set on a fixed table in the center
to guarantee precise capturing measurements for the frames {P} and {W}.

The FT sensor was attached to the scalpel through a custom-designed adapter consisting of
two parts: a grip attached to the back of the FT sensor, held by a human hand, and a scalpel handler
fastening the scalpel to the frontal side of the FT sensor. Eight markers were attached to the adapter
in a way to ensure distribution along the entire body for better tracking accuracy.

Within this experimental setup, we introduced three different materials (cork — CRK,
penoplex — PNX, and PVC). To ensure better generalization capabilities of the GMM/GMR, while
still capturing shape preservation capabilities we performed a series of straight line parallel cuts of
different length, 40 trials for each material resulting in a total of 120 demonstrations.

Out of demonstrations we can record the following set of data: trajectory of coordinate frame
{P} with respect to the base frame {B} registered by MoCap system and denoted as P = [XT, YT,
77, R;, R;, R}], and the wrench measurements expressed in coordinate frame {W} and denoted as
W = [Fy, Fy, FI, Ty, Ty, T2].

Opti track cameras

Markers Scalpel setup

Base Markers

Cutting material

Fig. 2
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Data processing. We introduced data processing procedure consisting from three steps.

1. Cutting phase slicing. Recorded data contains three phases: reaching, cutting and releasing.
Since we are interested in training cutting skill in particular, we sliced entire sequence and extracted
only data corresponding to that stage by detecting, when absolute value of contact forces Fy, F) change
above a specified threshold (see Fig. 3: red is trajectory on X, Y, Z and green is F, F), F, respectively).

2. Data imputation. We applied forward and backward fill techniques to guarantee the absence
of missing values in recorded data.

3. Data filtering. As obtained position data are for cutting straight lines, we filtered outliers by
fitting recorded sequences by a linear regression (see Fig. 4):

Y = a, + B, X,

N — —
X=X -Y)
o , X and Y are

where Y is the fitted value for Y measurements, o, = Y - By)_(, By, = < —
S-%)

mean values, N is the number is samples in the measurement’s sequence. We fit Z measurements the

same way.

We extended our training data by calculating from recorded MoCap trajectory data P the
associated twist § = [V}, VT, VE, c)z, (o;, 0)1]. It was done by numeric differentiation:

AP(¢
G ="
1fp
where &;, is the i-th column of &, £(0) = 0, AP(7) is the change in position between two consecutive
measurements, f, is the measurements frequency.

To filter wrench measurements W we applied Exponential Moving Average (EMA) filter, which
is a type of infinite impulse response filter that applies weighting factors which decrease exponentially
(see Fig. 5):

Wit = apmali + (1 — agma) Wi,

where W; is the i-th column of W, W is the exponential moving average value of W; at time ¢,

OEMA = N is the filter’s smoothing factor with ns being the desired number of periods or the span of
nS
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the EMA. The choice of affects the sensitivity of the EMA to changes in the data: a smaller n; makes
the EMA more responsive to new data, while a larger ny makes smoothing stronger.

Model training. We define generator input as a concatenation of time and material label
sequences U = [tT, MT] c R?*N and the output is defined as V=[P , &, W] € RI&N

GMMs assume that the training data Z = [U, V] are generated from a mixture of several Gaussian
distributions, each characterized by parameters mean py; covariance Xk, and a mixing coefficient my
which represents the weight of the £-th Gaussian component in the mixture. Then, the model training

problem formulated above can be resolved by applying expectation maximization algorithm with log-
likelihood maximization criteria:

Linear Regression on XY Plane ¥.m Linear Regression on XZ Plane

Y, m ] e Actual XZ data
1.00- — Fitted XZ line data

0.745
0.90-

0.745 A
0.80-

0.745 |

e Actual XY data ¥. o 0.704
0.745 { — F'itteleYlivne da'ta | | o o.' | | | | | | | | I
0.46 0.48 0.50 0.52 0.54 X,m 0.46 0.48 0.50 0.52 0.54 X, m
Fig. 4
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JOURNAL OF INSTRUMENT ENGINEERING. 2024. Vol. 67, N 6 M3B. BY30B. MPUBOPOCTPOEHUE. 2024. T. 67, Ne 6



506 Waddah Ali, S. A. Kolyubin

0= argmax/L(0; Z),
0e®

where log-likelihood cost function

N K
L(0; 5) =log(P(E, pl0)) = 2 X L(pn = k)(log(my) + log(N(Ex|pis, Zi))),
n=1 k=1

p, is a latent variable indicating the component that generated the (ny;) data point, (I(p,, = k)) is an
indicator function that is 1 if (p,, = k) and 0 otherwise, (NV(Z,|, Xx)) is the probability density of (Z,)
under the Gaussian distribution with parameters (p) and ().

The algorithm consists of two steps. At the expectation step we compute the expected value of
L(6; E)

N K
Ez=[L0; E)] = 2 X vp,(k)(log(m) + 1og(MEn|pk, Zi))),
n=1 k=1

where v, (k) = E[I(p, = k)] = P(p, = kIE) = ,ZE"N(d"m o 2) represents the posterior probability that the
ElnkN (Bl Z)
(n4,) data point was generated by the (k) component, given the current parameter estimates.
At the maximization step we maximize the expected complete log-likelihood obtained at the
previous step with respect to parameters 0 keeping (y,,(k)) fixed.
So, we update parameters’ estimates the following way:

N
2Yp,()E,
new __ n=1
k - N 5
Z:“;YPn(k)
N _ newy /= new\T
Yo, ()(E, — KE, — ™)
Z}{lew _ nl
N )
215, (0
N
sz)z(k)
new __ n=l
) = .
N

Estimates convergence is assessed based on the change in log-likelihood between successive
iterations. Specifically, the algorithm is considered to have converged when the change in log-
likelihood is below a predefined tolerance level , i.e.,

AL = |L(O0D; B) — L(OO; E)| < a,

where: 6() and (0("D) are the parameter sets from consecutive iterations (7) and (¢ + 1) respectively.
Next, at the regression prediction step we calculate parameters of the GMR model out of GMM
representation. At first, we decompose GMM parameters for input and output dimensions:

U I b v
w | =
where pff € RPu, yf © RDv, St ¢ RPwDu, 5]V © RPwDy, 5% c RDwDu, 53V e RDwDy, for each
component &, "™ = i, + ZFUER) (U - i), T == - T ) 1=

Then, we calculate the predicted output as

V =y (KU

Wi =
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LU UL
where y,(K)U = KnkN(‘U, B 2 ) is the responsibility.
2mN(U; s 25
Training results. Figures 6-9 illustrate the resulted generated trajectory-wrench data by GMM/
GMR compared to expected values. Fig. 6 — expected vs generated cutting trajectories on XZ plane
using trained GMM/GMR for 3 different materials: « — cork, b — PVC, ¢ — PNX. Fig. 7— generated
from GMM/GMR vs Expected Wrench data for cork; Fig. 8 — for penoplex; Fig. 9 — for PVC.

a) b) €)
VA VA Z
0.8
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0.9 0.
0.6 ?

0.7 0.7
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—— Generated cutting trajectory — Expected cutting trajectory
Fig. 6
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Fig. 10 illustrates how model parameters (6) converge to fit the training trajectory-wrench
data (E) using change in log-likelihood criteria (AL) which reaches the threshold (o = 1-3) within
100 epochs (training iterations).

The results of training the GMM/GMR model on the preprocessed collected data and evaluating
the generated trajectory, twist and wrench data compared to expected means of training trajectory,
twist and wrench data Z. To assess the model’s performance, metrics such as root mean squared error
(RMSE)) for Twist & and Position P, was employed. These evaluation metrics are detailed in Table.

1 N _ ~
€= _Z(V_V)a
1 Ni=1 i i

where V and V denote predicted and averaged recorded values for V c [P, €] at time ¢, € refers to RMSE.

To evaluate the correspondence of the generated wrench to position data, we calculated the
root mean squared error for the calculated power values from both predicted and expected Wrench
and Position data (I1, IT), respectively. The results under different materials and cutting shapes are
illustrated in Table:

where i refers to axes (X, Y, Z)
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RMSE Evaluation metric for training the GMM/GMR model AL, a. u.
for all data where ep, €, €, represent the RMSE for Position,
twist and Power, respectively

1.2 1

Material €p, m €¢, ms e, W |

Cork 0.1165 0.0714 0.1408 0.8 |
Penoplex 0.1031 0.0711 0.1462 ]
PVC 0.1012 0.0710 0.1430 04 1

Conclusions and future work. In this study, 0.0 {
our primary objective was to train behavior priors 0 ' 40 ' 80 Iterations
models for robotic manipulation in interactive Fig. 10
tasks, where both trajectory and force profiles hold
significant importance. Initially, we conducted simultaneous collection of trajectory and force/
torque data across multiple trials for the material cutting scenario. This involved designing a custom
setup with a scalpel attached to an force-torque sensor to capture interaction wrench data and a
motion capture system to record associated cutting trajectories. Subsequently, we underwent a
data preprocessing phase to ready the dataset for training a GMM/GMR model, as a generator
for behavior priors. We validated the convergence of the proposed model training and verified
its performance on tests datasets, which demonstrated high accuracy. The novelty of this work is
also in using GMM/GMR model with extended input that includes material labels, which opens
opportunity for implementing an approach with a mixture of behavior prior generators specific
for different materials. Future steps involve utilizing obtained behavior priors for regularization
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to improve robot interaction control systems that can be based on Reinforcement Learning (RL)
policies training or on optimization-based modern indirect force control algorithms similar to VIC
(Variable Impedance Controllers) to train nonlinear functions for stiffness and damping tuning.
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